LIMIT FUNGSI
Fungsi pada garis bilangan riil
Bila f : R R terdefinisi pada garis bilangan riil, dan p, L R maka kita menyebut limit f ketika x mendekati p adalah L, yang ditulis sebagai:
jika dan hanya jika untuk setiap ε > 0 terdapat δ > 0 sehingga |x - p|< δ mengimplikasikan bahwa |f (x) - L | < ε . Di sini, baik ε maupun δ merupakan bilangan riil. Perhatikan bahwa nilai limit tidak tergantung pada nilai f (p)
Limit seara
Masukan x dapat mendekati p dari atas (kanan di garis bilangan) atau dari bawah (kiri). Dalam hal ini limit masing-masingnya dapat ditulis sebagai
atau
Bila kedua limit ini sama nilainya dengan L, maka L dapat diacu sebagai limit f(x) pada p . Sebaliknya, bila keduanya tidak bernilai sama dengan L, maka limit f(x) pada p tidak ada.
Definisi formal adalah sebagai berikut. Limit f(x) saat x mendekati p dari atas adalah L bila, untuk setiap ε > 0, terdapat sebuah bilangan δ > 0 sedemikian rupa sehingga |f(x) - L| < ε pada saat 0 < x - p < δ. Limit f(x) saat x mendekati p dari bawah adalah L bila, untuk setiap ε > 0, terdapat bilangan δ > 0 sehingga |f(x) - L| < ε bilamana 0 < p - x < δ.
Bila limitnya tidak ada terdapat osilasi matematis tidak nol.
Limit fungsi pada ketakhinggaan
Bila dua unsur, ketakhinggaan positif dan negatif {-∞, +∞}, ditambahkan pada garis bilangan riil, kita dapat mendefinisikan limit fungsi pada ketakhinggaan. Dua unsur tambahan ini bukanlah bilangan, namun berguna dalam memerikan kelakuan limit pada kalkulus dan analisis.
Bila f(x) adalah fungsi riil, maka limit f saat x mendekati tak hingga adalah L, dilambangkan sebagai:
jika dan hanya jika untuk semua ε > 0 terdapat S > 0 sedemikian rupa sehingga |f (x) - L| < ε bilamana x > S.
Dengan cara yang sama, limit f saat x mendekati tak hingga adalah tak hingga, dilambangkan oleh
jika dan hanya jika bila untuk semua R > 0 terdapat S > sedemikian sehingga f(x) > R bilamana x > S.
Rumus biasa
Rumus
-
ini berarti bahwa nilai dari fungsi f(x) mendekati M jika nilai x mendekati a biar lebih paham kita simak contoh berikutContoh 1
Tentukan limit dari
Jawab :
Untuk nilai x mendekati 1 maka (4x2+1) akan mendekati 4.12 + 1 = 5 sehingga nilai dari
Contoh 2
Tentukan nilai dari limitJawab
Misal sobat langsung memasukkan nili x = 1 ke dalam persamaan hasilnya tidak akan terdefinisi karena bilangan pembagi ketemu 0 (x-1). Akan tetapi bentuk di atas masih bisa disederhakan guna menghilangkan komponen pembagi yang bernilai nol yaituCara Mengerjakan Limit Fungsi yang Tidak Terdefinisi
Adakalanya penggantian niali x oleh a dalam lim f(x) x→a membuat f(x) punya nilai yang tidak terdefinisi, atau f(a) menghasilkan bentuk 0/0, ∞/∞ atau 0.∞. Jika terjadi hal tersebut solusinya adalah bentuk f(x) coba sobat sederhanakan agar nilai limitnya dapat ditenntukan.Limit Bentuk 0/0
Bentuk 0/0 kemungkinan timbul dalamketika sobat menemukan bentuk seperti itu coba untuk utak-utik fungsi tersebut hingga ada yang bisa dicoret. Jika itu bentuk persaman kuadrat sobat bisa coba memfaktorkan atau dengan cara asosiasi dan jangan lupakan ada aturan a2-b2 = (a+b) (a-b). Berikut contohnyaBentuk ∞/∞
Bentuk limit ∞/∞ terjadi pada fungsi suku banyak (polinom) sepertiContoh Soal
Coba sobat tentukanJawabBerikut rangkuman rumus cepat limit matematika bentuk ∞/∞- Jika m<n maka L = 0
- Jika m=n maka L = a/p
- Jika m>n maka L = ∞
Bentuk Limit (∞-∞)
Bentuk (∞-∞) sering sekali muncul dalam ujian nasional. Bentuk soalnya akan sangat beragam. Namun demikian, penyelesaiannya tidak jauh-jauh dari penyederhanaan. Be creative, out of the box. Berikut contoh soal yang kami ambil dari ujian nasional 2013.Tentukan LimitJika sobat masukkan x -> 1 maka bentuknya akan mmenjadi (∞-∞). Untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi
Komenta